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Using molecular dynamics simulation we examine changeovers among crystal, glass, and liquid at high
density in a two dimensional binary mixture. We change the ratio between the diameters of the two components
and the temperature. The transitions from crystal to glass or liquid occur with proliferation of defects. We
visualize the defects in terms of a disorder variable Dj�t� representing a deviation from the hexagonal order for
particle j. The defect structures are heterogeneous and are particularly extended in polycrystal states. They look
similar at the crystal-glass crossover and at the melting. Taking the average of Dj�t� over the particles, we
define a disorder parameter D�t�, which measures the degree of overall disorder. The relaxation of D�t� after
quenching becomes slow at low temperature in the presence of size dispersity. Its steady state average is small
in crystal and large in glass and liquid. We also find that grain boundaries tend to be pinned with increasing size
dispersity in polycrystal states.
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I. INTRODUCTION

The phase behavior of binary particle systems is much
more complicated than that of one component systems,
where the temperature T, the average number density n
=N /V, and the composition are natural control parameters.
At high densities, it is known to be profoundly influenced
also by the size ratio �1 /�2 between the diameters of the two
components, �1 and �2 �1–5�. If �1 /�2 is close to unity at
large n, the system becomes a crystal at low T or a liquid at
high T. If �1 /�2 considerably deviates from unity, glass
states are realized at large n and at low T. In glass states, the
particle motions are nearly frozen and the structural relax-
ation time grows, but the particle configurations are random
yielding the structure factors similar to those in liquid.

Recently, the liquid-glass transition has been studied in a
large number of molecular dynamics simulations on model
binary mixtures both in two and three dimensions �6–10�. In
these simulations, the temperature T has mostly been the
control parameter at fixed average density and composition.
Some authors have applied a shear rate or a stress to glassy
systems as a new control parameter �8,10�. The size ratio
�1 /�2 has been chosen at particular values to realize fully
frustrated particle configurations and to avoid crystallization
and phase separation. However, for weaker size dispersity,
the degree of disorder should become smaller. Polycrystals
will be realized at some stage and a crystal with a small
number of point defects will be reached eventually. On this
crossover we are not aware of any systematic study and have
no clear picture.

In this paper, we first aim to visualize the disorder brought
about by the size dispersity in two dimensions. To this end
we will introduce a disorder variable Dj�t��0 representing a
deviation of the hexagonal crystal order around each particle
j. Snapshots of Dj�t� realized by each simulation run will
exhibit patterns indicating the nature of the defect structure.
We shall observe point defects in crystal, grain boundaries in
polycrystal, and amorphous disorder in glass. The average
D�t�=� j=1

N Dj�t� /N over the particles is a single “disorder pa-

rameter” characterizing the degree of overall disorder.
Halperin and Nelson �11� found that defects play a key

role in two-dimensional �2D� melting in one component sys-
tems, predicting continuous transitions with an intermediate
“hexatic” phase between crystal and liquid. They introduced
a sixfold orientation order variable, written as � j in this pa-
per. The correlation function g6�r� of the thermal fluctuations
of � j has been used to characterize the 2D defect-mediated
melting theoretically �4,5,12� and experimentally �13–16�.
Our disorder variable Dj�t� will be constructed from their � j,
so we will visualize the defect patterns exhibited by Dj�t�
also at the melting. The problem becomes much more com-
plex for binary mixtures, where the crystal-liquid transition
occurs with changing T or n at weak size dispersity �4,5� and
the glass-liquid transition occurs at stronger size dispersity
�6–10�. We should understand the defect structure by chang-
ing �1 /�2 and T �and/or n� both at the crystal-glass and
crystal-liquid transitions �17�.

In Sec. II, we will introduce the quantities mentioned
above and present our numerical results at fixed density and
composition, where the defects involved in the crystal-glass
and crystal-liquid transitions will be visualized. We will also
calculate the overall disorder parameter D�t� in transient
states and in steady states as a function of �1 /�2 and T. In
Sec. III, we will summarize our results and give some re-
marks.

II. NUMERICAL RESULTS

A. Method

We used a 2D model binary mixture interacting via a
truncated Lenard-Jones �LJ� potential v���r�, where � ,�
=1,2 represent the particle species. If the distance r between
two particles is larger than a cutoff rcut, we set v���r�=0. If
r�rcut, it is given by the Lennard-Jones potential,

v���r� = 4������

r
�12

− ����

r
�6	 − C��, �1�

which is characterized by the energy � and the soft-core di-
ameter ���= ���+��� /2 with �1 and �2 representing the
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�soft-core� diameters of the two components. The constant
C�� ensures v���r�→0 as r→rcut, so the potential is con-
tinuous at the cutoff distance. We set rcut=3.2�1 for any �
and � �18�. The particle numbers of the two species are N1
=N2=500, so N=N1+N2=103. With varying the size ratio
�2 /�1, the system volume V was changed such that the vol-
ume fraction of the soft-core regions defined by

	 = �N1�1
2 + N2�2

2�/V �2�

was fixed at 0.9 mostly. We set 	=1 only in one case �in the
lower panel of Fig. 8�. With the mass ratio being m1 /m2
= ��1 /�2�2, we integrated the Newton equations using the
leapfrog algorithm under the periodic boundary condition.
The system temperature was controlled with the Nose-
Hoover thermostat �19–21�. The time step of integration was
0.002
, where


 = �1

m1/� . �3�

Hereafter the time t and the temperature T will be measured
in units of 
 and � /kB, respectively.

We first equilibrated the system in a liquid state at T=2 in
a time interval of 103 and then quenched it to a lower final
temperature with further equilibration in a period of teq
=1.1�104 �22,23�. There was no appreciable time evolution
in the pressure, the energy, etc., in the time region t�4
�103 �see Fig. 8 as an example� �24�. The particles were
well mixed and no indication of phase separation was ob-
served in the final time region.

In our study, the size ratio was in the range 1�1 /�2
1.4. We saw no tendency of phase separation. If �1 /�2 is
too large, phase separation will be detected �25,26�. We show
typical particle configurations in Fig. 1 at the final simulation
time t=1.2�104 for �a� �2 /�1=1.1, �b� 1.2, �c� 1.225, and
�d� 1.4 at 	=0.9. The system length V1/2 is �a� 35.03, �b�
36.81, �c� 37.27, and �d� 40.55 in units of �1. They represent
�a� a crystal state with point defects, �b� and �c� polycrystal
states, and �d� a glass state.

B. Sixfold orientation order

In Fig. 1, a large fraction of the particles are enclosed by
six particles even at �1 /�2=1.4. The particle configurations
are remote from other ordered structures such as the square
structure �3�. Therefore we consider deviations from the hex-
agonal order. The local crystalline order is represented by a
sixfold orientation order variable �11�. For each particle j we
define

� j = �
k�bonded

exp�6i� jk� , �4�

where the summation is over the particles “bonded” to the
particle j. In our case, the two particles j�� and k�� are
bonded, if their distance rjk= �r j −rk� is shorter than R��

=1.25��� �8�. The upper cutoff R�� is slightly longer than
the first peak position of the pair-correlation function g���r�.
The � jk is the angle of the relative vector r j −rk with respect
to the x axis. For a perfect triangular crystal of a one com-
ponent system, the complex numbers � j are all equal to

6 exp�6i�� with � being the common angle of one of the
crystal axes with respect to the x axis. In the presence of
disorder, the absolute values �� j� are significantly different
from 6 for particles around defects. It is convenient to define
a local crystalline angle � j in the range 0� j �� /3 by

� j = � j/�� j� = e6i�j . �5�

In Fig. 2, we show the snapshots of the angles � j �j
=1, . . . ,103� for the same particle configurations in Fig. 1.
The color map is illustrated in Fig. 3. We can clearly see
point defects, grain boundaries, and glassy particle configu-
rations. In �b� the grain boundaries are localized, while in �c�
they are percolated. In �d� we can see narrow crystalline
regions with hexagonal order. Such regions become less ex-
tended but still survive in liquid at higher temperatures. Re-
cently, using a 2D model of block copolymers, Vega et al.
�27� numerically studied the grain boundary coarsening to
obtain pictures of the orientation angles similar to our Fig. 2,
though their system corresponds to one component particle
systems.

C. Disorder variable

We next introduce a different variable representing the
degree of disorder. In terms of the difference �k−� j be-
tween the bonded particle pairs, we define

Dj = �
k�bonded

�� j − �k�2 = 2 �
k�bonded

�1 − cos 6�� j − �k�� ,

�6�

for each particle j. This quantity is called the disorder vari-
able. If the thermal vibrations are neglected, Dj vanishes in

FIG. 1. Particle configurations for �a� �1 /�2=1.1, �b� 1.2, �c�
1.225, and �d� 1.4 at 	=0.9 and T=0.2 taken at the final simulation
time t=1.2�104. Smaller �larger� circles represent the smaller
�larger� particles. For the visualization purpose the diameters of the
circles in the snapshots are taken as A�1 and A�2 with A�1 for the
two species.
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single-component perfect crystals and is nonvanishing
around defects. It takes large values of order unity almost
everywhere in highly frustrated glass states. See the com-
ment �iv� in the last section for appropriateness of this vari-
able in glass and liquid.

In Fig. 4, snapshots of Dj are shown for �a� �2 /�1=1.1,
�a�� 1.15, �b� 1.2, �c� 1.225, �c�� 1.25, and �d� 1.4 at the final
states of the simulation runs at t=1.2�104. Those of �a�, �b�,
�c�, and �d� are taken from the same particle configurations
as in the corresponding panels of Figs. 1 and 2. The color of
the particles varies in the order of rainbow, being violet for
Dj =0 and red for the maximum of Dj. In Fig. 4, the maxi-
mum of Dj is 1.71, 2.64, 3.59, 4.36, 4.34, and 4.58 in �a�–�d�
in this order. In crystals with �2 /�1 close to unity, a small
number of defects can be detected as bright points as in �a�
and �a��. In polycrystals, defects are accumulated to form
grain boundaries detectable as bright closed curves enclosing small crystalline regions, as in �b� and �c�. With further in-

creasing �2 /�1, defects are proliferated and a large fraction
of the particles are depicted as bright points. In the largest
size ratio in �d�, most of the particles are in disordered con-
figurations. With varying �2 /�1, this crossover occurs in a
narrow range around 1.2.

In Fig. 5, the structure factor of the number density n�r�
=n1�r�+n2�r� is written for �a� �2 /�1=1.15, �b� 1.2, and �c�
1.225 to confirm the abruptness of this crystal-glass cross-
over. The structure factor in �a� exhibits Bragg peaks show-
ing translational order, while that in �c� is similar to that in
liquid but still retains the sixfold angular symmetry. For the
intermediate case �b�, the sixfold symmetry is evidently
present and the translational order is being lost. �See Fig. 9
below for structure factors in typical cases far from the tran-
sitions.� We note that similar structure factors were taken
from a quasi-2D colloid suspension around the melting �13�.

FIG. 2. �Color online� Snapshots of the angles � j in Eq. �5� for
�a� �1 /�2=1.1, �b� 1.2, �c� 1.225, and �d� 1.4 with the color map in
Fig. 3. The data are common to those in Fig. 1. Changeover from
crystal to glass occurs with polycrystal as an intermediate state.

FIG. 3. �Color online� Color map for the angle � j in Eq. �5� for
particle j at the center, around which the crystal order is perfect.
The gray circle is the bonded region. The vector r jk �red arrow�
makes an angle of � j =40° with respect to the horizontal axis. The
color of particle j is then blue.

FIG. 4. �Color online� Disorder variable Dj in Eq. �6� for �a�
�2 /�1=1.1, �a�� 1.15, �b� 1.2, �c� 1.225, �c�� 1.25, and �d� 1.4 with
	=0.9 and t=1.2�104. The particle configurations in �a�, �b�, �c�,
and �d� are common to those in Figs. 1 and 2. Here the color
changes in the order of rainbow.
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The time scale of the particle configurations becomes ex-
ceedingly slow in glass states �6–10�. Also in polycrystal
states, the motions of the grain boundaries become slow with
increasing �2 /�1, while the grain boundaries coarsen to dis-
appear in one component systems on a rapid time scale �see
the corresponding curve in Fig. 7� �27�. In Fig. 6, we present
two additional snapshots of Dj�t� at �2 /�1=1.225 for t=6
�103 and t=8�103, while panel �b� in Fig. 4 is the snapshot
at t=12�103 in the same run. These three snapshots exhibit
percolated grain boundaries with only small differences on
large scales, indicating pinning of the grain boundaries.
Panel �b� in Fig. 2 demonstrates that the system is a poly-
crystal. As a result, we cannot deduce the life time of the
gran boundaries from our simulation in this case.

D. Degree of overall disorder

We now introduce a single “disorder parameter” repre-
senting the degree of overall disorder by taking the average
over all the particles,

D�t� =
1

N
�

j

Dj�t� , �7�

where the time dependence of Dj�t� and D�t� is explicitly
written. In Fig. 7, we show time evolution of D�t�, where
quenching is from liquid at t=103. It undergoes very slow
time evolution with finite size dispersity in polycrystal and
glass, in accord with Fig. 6. For �2 /�1=1.4, D�t� increases
upon quenching �see Fig. 9 below for its reason�. In the time
region t�4�103, we can see no appreciable relaxation in

these curves. For the one component case, the relaxation
from liquid to crystal terminates rapidly on a time scale of
50.

However, the curves in Fig. 7 with size dispersity weakly
depend on time around the average even in apparent steady
states. For example, D�t� is 1.10 in �b1� of Fig. 6, 1.17 in
�b2� of Fig. 6, and 1.11 in �b� of Fig. 4. This temporal fluc-
tuations should diminish for larger system size. Its deviation
from the time average became largest when the grain bound-
aries appreciably moved in polycrystal states. For each simu-
lation run, we defined the time average of D�t� as

D̄ =
1

td
�

tf−td

tf

dtD�t� , �8�

where tf�=1.2�104� is the terminal time of the simulation
run and td�=2�103� is the width of the time interval of tak-

ing data. We regard D̄ as a steady state average though glass
states may further relax on longer timescales.

In Fig. 8, we plot D̄ as a function of the size ratio. In the
upper panel, where 	=0.9, liquid states are realized for any
�2 /�1 at T=2, while the system is crystalline for �2 /�1
�1.2 and glassy for larger �2 /�1 at T=0.2. In the range

�2 /�1�1.3, D̄ in the liquid state at T=2 becomes smaller

than D̄ in the glass state at T=0.2. This is because D̄ in-
creases weakly with increasing �2 /�1 in liquid and increases
more strongly in glass. In the lower panel, where 	=1, the
system crosses over from crystal to glass both for T=0.2 and

2, and D̄ increases rather abruptly around �2 /�11.2. For

�2 /�1�1.1, D̄ takes a small positive number due to the ther-

mal motions of the particles. In Fig. 9, D̄ is plotted as a

function of �2 /�1 and T. It shows the overall behavior of D̄.

That is, D̄ is small in crystal and increases abruptly in glass

FIG. 5. Structure factor for �a�� �2 /�1=1.15, �b� 1.2, and �b��
1.225 in Fig. 4. Bragg peaks can be seen in �a� and �b�, while it
resembles that in liquid for �c� �see �c� in Fig. 7�.

FIG. 6. �Color online� Disorder variable Dj in Eq. �6� in a poly-
crystal state at �2 /�1=1.225 for �b1� t=6�103 and �b2� t=8
�103, in the same run giving the panel �b� in Fig. 4 at t=12
�103. Comparison of these three snapshots indicates very slow
time evolution of the grain boundaries. See points �b1�, �b2�, and
�b� in Fig. 7 also.

FIG. 7. Relaxation of the disorder parameter D�t� in Eq. �7� at
	=0.9 for �2 /�1=1.0, 1.175, 1.2, 1.225, and 1.4 from below. The
temperature T is lowered from 2 to 0.2 at t=103. For the one com-
ponent case �2 /�1=1.0, it takes place on a time scale of 50, as
shown in the expanded inset. With size dispersity, D�t� relaxes
slowly on timescales of order 4�103. Snapshots of Dj�t� at two
points �b1� and �b2� on the curve of �2 /�1=1.2 are given in Fig. 6.
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and liquid. Interestingly, for �2 /�1�1.25, D̄ decreases with
increasing T from glass to liquid �see Fig. 7�. For such size
ratios, highly disordered particle configurations can be
pinned at low T and the thermal motions at high T can relax
them.

E. Defect-mediated melting

In our simulations at fixed density, we observed defect
proliferation at the melting �as well as at the crystal-glass
crossover� and no coexistence of crystal and liquid regions
separated by sharp interfaces. The system became highly het-
erogeneous �as in Fig. 10 below�, but no nucleation process

could be detected. Figure 9 shows that D̄ changes continu-
ously along the T axis at each �2 /�1 including the one com-
ponent limit �2 /�1=1. Similarly, in a 2D Lenard-Jones sys-
tem with N=256 at 	=0.8, Frenkel and McTague detected
no discontinuity in the average pressure and energy �12�.
Theoretically, the 2D melting can be either continuous or
first order depending on the specific details of the system
�28,29�. It is a delicate problem to determine its precise na-
ture in the presence of the heterogeneity developing at the
transition �13,14,16,15�.

To visualize the physical process involved at the melting,
we display snapshots of � j�t� and Dj�t� at t=6000 and 6200
in Fig. 10 in the one component case at T=1.3, where the

change of D̄ is abrupt in Fig. 9. The D�t� in Eq. �7� is 1.80 at
t=6000 and 1.60 at t=6200. We can see percolated grain-
boundary patterns and chains of point defects. The area frac-
tion of the crystalline regions with small Dj continuously
decreases �increases� with further raising �lowering� the tem-
perature. We mention a simulation by McTague et al. in a
one component system with soft-disk r−6 potentials �30�, re-
porting the presence of both free dislocations and many grain

FIG. 8. Disorder parameter D̄ in Eq. �8� for T=0.2 and 2, with
	=0.9 in the upper panel and 1 in the lower panel. Liquid states are
realized on the curve of T=2 in the upper panel. The other curves
show the crystal-glass crossover.

FIG. 9. Disorder parameter D̄ in Eq. �8� as a function of �2 /�1

and T for 	=0.9. Typical structure factors for �A� crystal, �B� glass,
and �C� liquid in the upper panel, where the corresponding points
are indicated in the lower panel.

FIG. 10. �Color online� Polycrystal configurations of � j in Eq.
�5� �top� and Dj in Eq. �6� �bottom� at t=6�103 �left� and 6.2
�103 �right� in the one component case �2 /�1=1 at T=1.3 and
	=0.9. The system is intermediate between crystal and liquid. The
defect structure is evolving rapidly on a time scale of 50.
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boundaries at the melting. Some authors already pointed out
relevance of grain boundaries in the 2D melting �29,31�. Us-
ing inherent-structure theory, Somer et al. �32� found perco-
lated grain boundaries in “inherent structures” after a
hexatic-to-liquid transition. Among many experiments, grain
boundaries were evidently shown in Ref. �15�.

We notice close similarity between the snapshots of the
polycrystal states in Figs. 6 and 10. However, very different
are the time scales of the dynamics of Dj�t� without and with
size dispersity. Indeed, the patterns in Fig. 10 changed ap-
preciably on a rapid time scale of 50, while the large scale
patterns in Fig. 6 were nearly frozen in our simulation time.

III. SUMMARY AND REMARKS

In summary, using molecular dynamics simulation on a
2D LJ binary mixture, we have investigated the effects of the
size dispersity in the range 1�1 /�21.4 and the tempera-
ture in the particle configurations at fixed average density
and composition. Our main objective has been to visualize
defects, so the system size �N=103� has been chosen to be
rather small. Larger system sizes are needed to get reliable
correlation functions of the density and the sixfold orienta-
tion variable. We summarize our main results and give re-
marks.

�i� We have displayed the angle variable � j defined by Eq.
�5� in Fig. 2 and the disorder variable Dj�t� defined by Eq.
�6� in Fig. 4 at low T=0.2. The snapshots of these variables
evidently show how the particle configurations become dis-
ordered with increasing the size ratio. Those of Dj�t� provide
the real space pictures of the defect structures on various
spatial scales. We find polycrystal states with grain bound-
aries between crystal and glass. The motions of the grain
boundaries are much slowed down with size dispersity, as in
Figs. 6 and 7.

�ii� The disorder parameter D�t� in Eq. �7� or its time

average D̄ in Eq. �8� is a measure of overall disorder. As in
Fig. 7, the relaxation of D�t� after quenching from a high to
a low temperature occurs on a very long time scale with size
dispersity, while it relaxes much faster in one component

systems. The steady state average D̄ is small in crystal and
increases abruptly in glass and liquid, with increasing �1 /�2
or T, as in Figs. 8 and 9.

�iii� In our system, the crystal-glass and crystal-liquid
crossovers proceeded with increasing the defect density
without nucleation. Remarkable resemblance is noteworthy

between the polycrystal patterns of Dj�t� at the crystal-glass
transition in Figs. 4 and 6 and those in the one component
case at the crystal-liquid transition in Fig. 10. However, the
time scale of the defect structure is drastically enlarged with
increasing �1 /�2. In these two transitions, the disorder pa-

rameter D̄ increases abruptly but continuously from small
�crystal� values to large �glass or liquid� values. In these
cases, polycrystal states appear with large scale heterogene-
ities in Dj�t�, as can be seen in Figs. 4, 6, and 10.

�iv� The particle configurations will increasingly deviate
from the hexagonal order in the crossover from crystal to
glass or liquid. They might become rather closer to other
ordered structures for some fraction of the particles �3,4�. In

such cases, large values of Dj�t� and D̄ will have only quali-
tative meaning, since they represent deviations from the hex-
agonal order.

�v� We should study the pinning mechanism of grain
boundaries in polycrystal in the presence of size dispersity.
Future experiments on the grain boundary motion should be
informative. We should also examine the dynamical proper-
ties such as the diffusion constant, the shear viscosity, and
the time-correlation functions for various degrees of disor-
der. They have been calculated around the liquid-glass tran-
sition �6–10�. We should also investigate the so-called dy-
namic heterogeneity in glass �6–9� using the sixfold
orientation variable � j and the disorder variable Dj.

�vi� For the pair potentials in Eq. �1� and for our limited
simulation time, we have detected no tendency of phase
separation. By increasing the repulsion among the different
components, we could study nucleation of crystalline do-
mains in a glass matrix, for example.

�vii� We will report shortly on the shear flow effect at the
crystal-glass and crystal-liquid transitions in two-
dimensional. It has already been studied at the liquid-glass
transition �8,10�. It is of interest how an applied shear affects
the defect structure and induces plastic deformations �33�.
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